Target-dependent Twitter Sentiment Classification

نویسندگان

  • Long Jiang
  • Mo Yu
  • Ming Zhou
  • Xiaohua Liu
  • Tiejun Zhao
چکیده

Sentiment analysis on Twitter data has attracted much attention recently. In this paper, we focus on target-dependent Twitter sentiment classification; namely, given a query, we classify the sentiments of the tweets as positive, negative or neutral according to whether they contain positive, negative or neutral sentiments about that query. Here the query serves as the target of the sentiments. The state-ofthe-art approaches for solving this problem always adopt the target-independent strategy, which may assign irrelevant sentiments to the given target. Moreover, the state-of-the-art approaches only take the tweet to be classified into consideration when classifying the sentiment; they ignore its context (i.e., related tweets). However, because tweets are usually short and more ambiguous, sometimes it is not enough to consider only the current tweet for sentiment classification. In this paper, we propose to improve target-dependent Twitter sentiment classification by 1) incorporating target-dependent features; and 2) taking related tweets into consideration. According to the experimental results, our approach greatly improves the performance of target-dependent sentiment classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification

We propose Adaptive Recursive Neural Network (AdaRNN) for target-dependent Twitter sentiment classification. AdaRNN adaptively propagates the sentiments of words to target depending on the context and syntactic relationships between them. It consists of more than one composition functions, and we model the adaptive sentiment propagations as distributions over these composition functions. The ex...

متن کامل

Target-Dependent Twitter Sentiment Classification with Rich Automatic Features

Target-dependent sentiment analysis on Twitter has attracted increasing research attention. Most previous work relies on syntax, such as automatic parse trees, which are subject to noise for informal text such as tweets. In this paper, we show that competitive results can be achieved without the use of syntax, by extracting a rich set of automatic features. In particular, we split a tweet into ...

متن کامل

Effective LSTMs for Target-Dependent Sentiment Classification

Target-dependent sentiment classification remains a challenge: modeling the semantic relatedness of a target with its context words in a sentence. Different context words have different influences on determining the sentiment polarity of a sentence towards the target. Therefore, it is desirable to integrate the connections between target word and context words when building a learning system. I...

متن کامل

Target-Dependent Sentiment Classification with Long Short Term Memory

Target-dependent sentiment classification remains a challenge: modeling the semantic relatedness of a target with its context words in a sentence. Different context words have different influences on determining the sentiment polarity of a sentence towards the target. Therefore, it is desirable to integrate the connections between target word and context words when building a learning system. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011